How do you solve lnxln(1x)=2?

2 Answers
Mar 16, 2018

x=e

Explanation:

Since ln(1x)=lnx, the equation becomes

2lnx=2lnx=1

So

x=e

Mar 16, 2018

x=e

Explanation:

We have,(1)logaX=nX=an
(2)loga(MN)=logaMlogaN
Here,
lnxln(1x)=2, Applying (2) ,we get
lnx[ln1lnx]=2
lnxln1+lnx=2, where, ln1=0
2lnx=2
lnx=1logex=1, Applying (1) ,we get
x=e1=e