How do you solve lnx+ln(x2)=1?

1 Answer
Sep 10, 2015

Use exponentiation to produce a quadratic equation to solve using the quadratic formula.

Discard the root of this quadratic that results in x<0, leaving the solution:

x=1+1+e

Explanation:

e=e1=eln(x)+ln(x2)=eln(x)eln(x2)=x(x2)=x22x

So x22xe=0

Then using the quadratic formula, with a=1, b=2 and c=e

x=b±b24ac2a=2±22(4×1×e)21

=2±4+4e2

=1±1+e

Now 1+e>1, so 11+e<0 and ln(11+e) is not defined.

So the only valid solution is x=1+1+e