How do you solve ln x + ln (x+6) = 1/2 ln 9lnx+ln(x+6)=12ln9?

1 Answer
Jun 20, 2015

x=-3+\sqrt{12}x=3+12
Use rules for adding logarithms and rule for bringing the coefficient inside the logarithm as an exponent.

Explanation:

ln(A)+ln(B)=ln(AB)ln(A)+ln(B)=ln(AB)

so

ln(x)+ln(x+6)=ln(x^2+6x)ln(x)+ln(x+6)=ln(x2+6x)

Cln(D)=ln(D^C)Cln(D)=ln(DC)

so

1/2ln(9)=ln(9^{1/2})=ln(3)12ln(9)=ln(912)=ln(3)

Making these substitutions,

ln(x)+ln(x+6)=1/2ln(9)ln(x)+ln(x+6)=12ln(9)

becomes

ln(x^2+6x)=ln(3)ln(x2+6x)=ln(3)

which requires,

x^2+6x=3x2+6x=3

\implies x^2+6x-3=0x2+6x3=0

x={-6\pm\sqrt{6^2-4(1)(-3)}}/{2(1)}x=6±624(1)(3)2(1)

x=-3\pm\sqrt{12}x=3±12

ln(x)ln(x) requires x>0x>0 so we choose the plus sign

x=-3+sqrt{12}x=3+12