How do you solve lnx+ln(x+1)=1lnx+ln(x+1)=1?

1 Answer
Jan 16, 2017

x=(sqrt(1+4e)-1)/2=1.223x=1+4e12=1.223

Explanation:

lnx+ln(x+1)=1lnx+ln(x+1)=1

Hence x(x+1)=ex(x+1)=e

i.e. x^2+x-e=0x2+xe=0

and using quadratic formula

x=(-1+-sqrt(1^2+4e))/2x=1±12+4e2

=(-1+-sqrt(1+4e))/2=1±1+4e2

=(-1+-3.446)/2=1±3.4462

=(2.446)/2=2.4462 or -4.446/24.4462

=1.223=1.223 or -2.2232.223

But as x=-2.223x=2.223 is not in domain, we have x=(sqrt(1+4e)-1)/2=1.223x=1+4e12=1.223
graph{lnx+ln(x+1)-1 [-5, 5, -2.5, 2.5]}