How do you solve lnx-ln(x+2)=1lnxln(x+2)=1?

1 Answer

x=(2e)/(1-e)x=2e1e

Explanation:

ln x-ln(x+2)=1lnxln(x+2)=1

ln (x/(x+2))=ln e" " "ln(xx+2)=lne because ln e=1lne=1

x/(x+2)=exx+2=e

x=e(x+2)x=e(x+2)

x=ex+2ex=ex+2e

x-ex=2exex=2e

x(1-e)=2ex(1e)=2e

(x(1-e))/((1-e))=(2e)/(1-e)x(1e)(1e)=2e1e

(xcancel((1-e)))/cancel((1-e))=(2e)/(1-e)

x=(2e)/(1-e)

God bless...I hope the explanation is useful.