How do you solve lnx-ln5=0lnxln5=0?

2 Answers
Jan 4, 2017

x=5x=5

Explanation:

Using the property that a^(log_a(x))=xaloga(x)=x and lnln is the base-ee logarithm:

ln(x)-ln(5) = 0ln(x)ln(5)=0

=> ln(x) = ln(5)ln(x)=ln(5)

=> e^ln(x) = e^ln(5)eln(x)=eln(5)

:. x = 5

Jan 4, 2017

lnx-ln5=0

Add ln5 to each side:
lnx=ln5

x=5