How do you solve Log_10x = x^3 - 3log10x=x33?

1 Answer
Dec 2, 2015

Solve numerically using Newton's method to find:

x_1 ~~ 1.468510541627833x11.468510541627833

x_2 ~~ 0.00100000000230258523x20.00100000000230258523

Explanation:

Let:

f(x) = x^3 -3 - log_10 x=x^3-3-(ln x)/(ln 10)f(x)=x33log10x=x33lnxln10

Then:

f'(x) = 3x^2-1/(x ln 10)

Choose a first approximation a_0 then iterate using the formula:

a_(i+1) = a_i - f(a_i)/(f'(a_i))

= a_i - (a_i^3-3-log_10(a_i))/(3a_i^2-1/(a_i ln 10))

Choosing a_0 = 1 and putting this formula into a spreadsheet, I found:

a_0 = 1

a_1 = 1.779512686040294

a_2 = 1.521859848585931

a_3 = 1.470479042421975

a_4 = 1.468513364194865

a_5 = 1.468510541633648

a_6 = 1.468510541627833

a_7 = 1.468510541627833

Choosing a_0 = 0.001 with the same formula, I found:

a_0 = 0.001

a_1 = 0.00100000000230258523

a_2 = 0.00100000000230258523

Let's look at the graph of f(x):

graph{x^3 -3 - log x [-7.02, 7.023, -3.51, 3.51]}