How do you solve Log_10x = x^3 - 3log10x=x3−3?
1 Answer
Solve numerically using Newton's method to find:
x_1 ~~ 1.468510541627833x1≈1.468510541627833
x_2 ~~ 0.00100000000230258523x2≈0.00100000000230258523
Explanation:
Let:
f(x) = x^3 -3 - log_10 x=x^3-3-(ln x)/(ln 10)f(x)=x3−3−log10x=x3−3−lnxln10
Then:
f'(x) = 3x^2-1/(x ln 10)
Choose a first approximation
a_(i+1) = a_i - f(a_i)/(f'(a_i))
= a_i - (a_i^3-3-log_10(a_i))/(3a_i^2-1/(a_i ln 10))
Choosing
a_0 = 1
a_1 = 1.779512686040294
a_2 = 1.521859848585931
a_3 = 1.470479042421975
a_4 = 1.468513364194865
a_5 = 1.468510541633648
a_6 = 1.468510541627833
a_7 = 1.468510541627833
Choosing
a_0 = 0.001
a_1 = 0.00100000000230258523
a_2 = 0.00100000000230258523
Let's look at the graph of
graph{x^3 -3 - log x [-7.02, 7.023, -3.51, 3.51]}