How do you solve log_11 2+2log_11x=log_11 32log112+2log11x=log1132?

1 Answer
Oct 27, 2016

x=4x=4

Explanation:

log_11 2 +2 log_11 x = log _ 11 32log112+2log11x=log1132

log_11 2 +2 log_11 x - log _ 11 32=0log112+2log11xlog1132=0

log_11 2 + log_11 x^2 - log _ 11 32=0log112+log11x2log1132=0---> Use property log_bx^n=nlog_bxlogbxn=nlogbx

log_11 ((2x^2)/32)=0log11(2x232)=0---> Use properties log_bx+log_by=log_b(xy)logbx+logby=logb(xy) and #log_bx-log_by=log_b(x/y)

11^0=(x^2)/16110=x216

1=(x^2)/161=x216

x^2=16x2=16

x=+- sqrt 16x=±16

x=+-4x=±4

:.x=4