How do you solve log2(5x+7)−log2x=2?
1 Answer
Nov 2, 2015
Explanation:
Note that
log2(5x+7)−log2x=2
⇒log2(5x+7)+log2(1x)=2
⇒log2(5x+7x)=2
⇒5x+7x=22
⇒5x+7=4x
⇒x=−7
Note that
log2(5x+7)−log2x=2
⇒log2(5x+7)+log2(1x)=2
⇒log2(5x+7x)=2
⇒5x+7x=22
⇒5x+7=4x
⇒x=−7