How do you solve log_2(x^2 - 10)= log_2 (3x)log2(x210)=log2(3x)?

1 Answer
Apr 8, 2016

x=5x=5

Explanation:

log_b p = log_b qlogbp=logbq
rArr p=qp=q

Therefore
color(white)("XXX")log_2(x^2-10)=log_2(3x)XXXlog2(x210)=log2(3x)
color(white)("XXX")rArr x^2-10=3xXXXx210=3x

color(white)("XXX")rarr x^2-3x-10=0XXXx23x10=0

color(white)("XXX")rarr (x-5)(x+2)=0XXX(x5)(x+2)=0

color(white)("XXX")rarr x=5color(white)("XX")orcolor(white)("XX")x=-2XXXx=5XXorXXx=2

But neither loglog is defined when x=-2x=2 and therefore this result is extraneous.