How do you solve log_(2)x^2+log_(.5)x=5?

1 Answer
Feb 16, 2017

x=32

Explanation:

log_2x^2+log_0.5x=5

Now log_2x^2=2log_2x=(2logx)/log2

and log_0.5x=logx/log0.5=logx/(log(1/2))=logx/(log1-log2)

= -logx/log2

Hence log_2x^2+log_0.5x=5

or 2logx/log2-logx/log2=5

or logx/log2=5

or logx=5log2=log2^5=log32

Hence, x=32