How do you solve Log_2x + log_2(x+2) = log_2(6x+1)log2x+log2(x+2)=log2(6x+1)?

3 Answers
Apr 18, 2018

x_1=2+sqrt(5) or x_2=2-sqrt(5)x1=2+5orx2=25

Explanation:

Log_2x + log_2(x+2) = log_2(6x+1)log2x+log2(x+2)=log2(6x+1)

Remember that log(a)+log(b)=log(a*b)log(a)+log(b)=log(ab)

Log_2(x*(x+2)) = log_2(6x+1)log2(x(x+2))=log2(6x+1)
x*(x+2)=6x+1x(x+2)=6x+1
x^2+2x=6x+1|-2xx2+2x=6x+12x
x^2=4x+1|-4x-1x2=4x+14x1
x^2-4x-1=0x24x1=0
(x-2)^2-1-4=0|+5(x2)214=0+5
(x-2)^2=5|sqrt()|+2(x2)2=5+2
x=2+-sqrt(5)x=2±5
x_1=2+sqrt(5) or x_2=2-sqrt(5)x1=2+5orx2=25
x_2<0 -> log(x_2)∈CC

Apr 18, 2018

x=2+sqrt5

Explanation:

log_2x+log_2(x+2)=log_2(6x+1)

color(green)(loga+logb=logab

log_2x(x+2)=log_2(6x+1)

By taking both sides for powers of 2 like this:

2^(log_2x(x+2))=2^(log_2(6x+1)

color(green)(a^(log_ax)=x

Thus

x(x+2)=6x+1

x^2+2x=6x+1

x^2-4x-1=0

x=2+sqrt5

" OR "

x=2-sqrt5color(red)" refused as it doesn't satisfy the equation"

color(blue)(x=2+sqrt(5))

Explanation:

By the laws of logarithms:

log_a(b)+log_a(c)=log_a(bc)

log_a(b)=log_a(c)<=>b=c

log_2(x)+log_2(x+2)=log_2(6x+1)

log_2(x(x+2))=log_2(6x+1)

log_2(x^2+2x)=log_2(6x+1)

:.

x^2+2x=6x+1

x^2-4x-1=0

By quadratic formula:

x=(4+-sqrt(16+4))/2=(4+-2sqrt(5))/2=2+-sqrt(5)

We need to test this:

x=2-sqrt(5)<0

For:

log_2(x) This is undefined for real mumbers.

So only the soloution:

color(blue)(x=2+sqrt(5))