How do you solve log_2 x+log_4 x=log_2 5log2x+log4x=log25?

1 Answer
Nov 2, 2015

x = 5^(2/3)x=523

Explanation:

Note that

log _2 x+log_4x = log_2 5log2x+log4x=log25
implies (lnx)/(ln2) + (lnx)/(ln2^2) = (ln5)/(ln2)lnxln2+lnxln22=ln5ln2
implies (lnx)/(ln2) + (lnx)/(2ln2) = (ln5)/(ln2)lnxln2+lnx2ln2=ln5ln2
implies(lnx)/(ln2)(1+1/2) = (ln5)/(ln2)lnxln2(1+12)=ln5ln2
implies lnx = 2/3 ln5lnx=23ln5
implies lnx = ln5^(2/3)lnx=ln523
implies x = 5^(2/3)x=523