How do you solve log_2 (x) + log_6 (x) = 3?

1 Answer
Sep 2, 2015

x = 2^((3(log_2 3+1))/(log_2 3 + 2))

Explanation:

log_a b = log_c b/log_c a
log (ab) = log a + log b
log_a a = 1
log_a b = c <=> a^c = b

log_2 x + log_6 x = 3
log_2 x + log_2 x/log_2 6 = 3
log_2 x(1+1/log_2 6) = 3
log_2 x = (3log_2 6)/(log_2 6 + 1)
x = 2^((3log_2 6)/(log_2 6 + 1))
x = 2^((3(log_2 3+1))/(log_2 3 + 2))