How do you solve log_2 x+log_8 32x=1log2x+log832x=1?

1 Answer
Apr 23, 2016

log_2x+log_8 32x=1log2x+log832x=1
=>log_2x+log_8 32+log_8x=1log2x+log832+log8x=1
=>log_2x+log_8 2^5+log_8x=1log2x+log825+log8x=1
=>log_2x+5log_8 2+log_8x=1log2x+5log82+log8x=1
=>log_2x+5xx1/log_2 8+1/log_x 8=1log2x+5×1log28+1logx8=1
=>log_2x+5xx1/log_2 2^3+1/log_x 2^3=1log2x+5×1log223+1logx23=1
=>log_2x+5xx1/(3log_2 2)+1/(3log_x 2)=1log2x+5×13log22+13logx2=1
=>log_2x+5/3+1/3xxlog_2 x=1log2x+53+13×log2x=1
=>3log_2x+5+log_2 x=33log2x+5+log2x=3
=>4log_2x=3-5=-24log2x=35=2
=>log_2 x=-1/2log2x=12
=>x=2^(-1/2)=1/sqrt2x=212=12