How do you solve log_2x+log_4x=log_2 5log2x+log4x=log25?

1 Answer
Apr 9, 2016

log_2x+log_4x=log_2 5log2x+log4x=log25
=>log_2x+1/log_x4=log_2 5log2x+1logx4=log25
=>log_2x+1/log_x2^2=log_2 5log2x+1logx22=log25
=>log_2x+1/(2log_x2)=log_2 5log2x+12logx2=log25
=>log_2x+1/2xxlog_2x=log_2 5log2x+12×log2x=log25
=>log_2x+log_2x^(1/2)=log_2 5log2x+log2x12=log25
=>log_2(x*x^(1/2))=log_2 5log2(xx12)=log25
=>(x*x^(1/2))=5(xx12)=5
=>(x^(3/2))=5(x32)=5
:. x=5^(2/3)