How do you solve log_3 (2x-4) - log_3 (x-1)=log_3 (x-2)log3(2x4)log3(x1)=log3(x2)?

1 Answer
Dec 21, 2015

I found:
x=3x=3

Explanation:

We can use the property of logs:
logx-logy=log(x/y)logxlogy=log(xy)
And write:
log_3[(2x-4)/(x-1)]=log_3(x-2)log3[2x4x1]=log3(x2)
If the logs are equal the arguments must be as well, so:
(2x-4)/(x-1)=x-22x4x1=x2
2x-4=(x-1)(x-2)2x4=(x1)(x2)
2x-4=x^2-2x-x+22x4=x22xx+2
x^2-5x+6=0x25x+6=0
Use the Quadratic Formula:
x_(1,2)=(5+-sqrt(25-24))/2=x1,2=5±25242=
Two solutions:
x_1=3x1=3 YES
×_2=2×2=2 NO