How do you solve log342−log3n=log37?
1 Answer
Apr 30, 2018
Explanation:
We should use
logan−logam=loga(nm) .
Therefore:
log3(42n)=log37
42n=7
7n=42
n=6
Hopefully this helps!
We should use
logan−logam=loga(nm) .
Therefore:
log3(42n)=log37
42n=7
7n=42
n=6
Hopefully this helps!