Note that 2log_x(3)->log_x(3^2)=log_x(9)2logx(3)→logx(32)=logx(9)
log_3(x)-log_x(9)=1log3(x)−logx(9)=1
log_3(x)=1+log_x(9)log3(x)=1+logx(9)
Consider the LHS ->log_10(x)/log_10(3) " "...Equation(1) =y_1
Consider the RHS ->1+log_10(9)/(log_10(x))" "..Equation(2)=y_2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As we have got all log_10 now we can drop the base 10 and use just log.
Try y_1=y_2 and see what happens.
log(x)/log(3)=1+log(9)/(log(x))
log(x) /log(3) = (log(x)+log(9))/log(x)
Cross multiply
log(x)^2=log(x)log(3)+log(3)log(9)
Set log(x) = t giving
t^2-tlog(3)-log(3)log(9)=0 larr" A quadratic in "t
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
y=ax^2+bx+c -> x=(-b+-sqrt(b^2-4ac))/(2a)
Where a=1; b=-log(3); c= -log(3)log(9)
t=(+log(3)+-sqrt(log(3)^2-4(1)(-log(3)log(9))))/(2(1))
t=+log(3)/2+-sqrt(2.0488022...)/2
t~~+0.95424...=>log^-1(t)= 9 = x
t~~-0.4771212....=>log^(-1)(t)= 1/3=x