How do you solve log_3x-2log_x3=1log3x2logx3=1?

3 Answers
Mar 6, 2018

See the subscript

Explanation:

Handwritten

Mar 6, 2018

x = 1/3, 9x=13,9

Explanation:

log_b a = 1/log_a blogba=1logab

log_3x−2log_x3=1log3x2logx3=1

log_3x−2/log_3x=1log3x2log3x=1

Let log_3x = a

a - 2/a = 1a2a=1

a^2 - a - 2 = 0a2a2=0

(a - 2)(a + 1) = 0(a2)(a+1)=0

a = -1, a = 2a=1,a=2

=> log_3x = -1 or log_3x = 2log3x=1orlog3x=2

log_3x = -1 => x = 3^-1 = 1/3log3x=1x=31=13
or
log_3x = 2 => x = 3^2 = 9log3x=2x=32=9

x = 1/3, 9x=13,9

Mar 6, 2018

x=9 and x=1/3x=9andx=13

Explanation:

Note that 2log_x(3)->log_x(3^2)=log_x(9)2logx(3)logx(32)=logx(9)

log_3(x)-log_x(9)=1log3(x)logx(9)=1

log_3(x)=1+log_x(9)log3(x)=1+logx(9)

Consider the LHS ->log_10(x)/log_10(3) " "...Equation(1) =y_1

Consider the RHS ->1+log_10(9)/(log_10(x))" "..Equation(2)=y_2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As we have got all log_10 now we can drop the base 10 and use just log.

Try y_1=y_2 and see what happens.

log(x)/log(3)=1+log(9)/(log(x))

log(x) /log(3) = (log(x)+log(9))/log(x)

Cross multiply

log(x)^2=log(x)log(3)+log(3)log(9)

Set log(x) = t giving

t^2-tlog(3)-log(3)log(9)=0 larr" A quadratic in "t
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

y=ax^2+bx+c -> x=(-b+-sqrt(b^2-4ac))/(2a)

Where a=1; b=-log(3); c= -log(3)log(9)

t=(+log(3)+-sqrt(log(3)^2-4(1)(-log(3)log(9))))/(2(1))

t=+log(3)/2+-sqrt(2.0488022...)/2

t~~+0.95424...=>log^-1(t)= 9 = x

t~~-0.4771212....=>log^(-1)(t)= 1/3=x

Tony B