How do you solve log(3x + 7)+ log(x - 2)= 1log(3x+7)+log(x2)=1?

1 Answer
Mar 16, 2016

x=8/3x=83

Explanation:

11. Use the log property, log_color(purple)b(color(red)m*color(blue)n)=log_color(purple)b(color(red)m)+log_color(purple)b(color(blue)n)logb(mn)=logb(m)+logb(n) to simplify the left side of the equation.

log(3x+7)+log(x-2)=1log(3x+7)+log(x2)=1

log((3x+7)(x-2))=1log((3x+7)(x2))=1

log(3x^2+x-14)=1log(3x2+x14)=1

22. Use the log property, log_color(purple)b(color(purple)b^color(orange)x)=color(orange)xlogb(bx)=x, to rewrite the right side of the equation.

log(3x^2+x-14)=log(10)log(3x2+x14)=log(10)

33. Since the equation now follows a "log=loglog=log" situation, where the bases are the same on both sides, rewrite the equation without the "log" portion.

3x^2+x-14=103x2+x14=10

44. Subtract 1010 from both sides of the equation.

3x^2+x-24=03x2+x24=0

55. Factor the quadratic equation.

(3x-8)(x+3)=0(3x8)(x+3)=0

66. Set each factor to 00 and solve for xx.

3x-8=0color(white)(XXXXXXX)x+3=03x8=0XXXXXXXx+3=0

3x=8color(white)(XXXXXXXXX)color(red)cancelcolor(green)(|bar(ul(color(white)(a/a)x=-3color(white)(a/a)|)))

color(green)(|bar(ul(color(white)(a/a)x=8/3color(white)(a/a)|)))

7. However, color(red)(x=-3) does not satisfy the equation since it produces a log with a negative number, and you color(teal)"can't log a negative number".

For example, when you substitute color(red)(x=-3) back into the original equation:

log(3x+7)+log(x-2)=1

log(3color(red)((-3))+7)+log(color(red)((-3))-2)=1

log(-9+7)+log(-5)=1

color(teal)(log(-2))+color(teal)(log(-5))=1

For this reason, color(red)(x=-3) is not a solution of the equation.

:., x=8/3.