How do you solve log(3x + 7)+ log(x - 2)= 1log(3x+7)+log(x−2)=1?
1 Answer
Explanation:
log(3x+7)+log(x-2)=1log(3x+7)+log(x−2)=1
log((3x+7)(x-2))=1log((3x+7)(x−2))=1
log(3x^2+x-14)=1log(3x2+x−14)=1
log(3x^2+x-14)=log(10)log(3x2+x−14)=log(10)
3x^2+x-14=103x2+x−14=10
3x^2+x-24=03x2+x−24=0
(3x-8)(x+3)=0(3x−8)(x+3)=0
3x-8=0color(white)(XXXXXXX)x+3=03x−8=0XXXXXXXx+3=0
3x=8color(white)(XXXXXXXXX)color(red)cancelcolor(green)(|bar(ul(color(white)(a/a)x=-3color(white)(a/a)|)))
color(green)(|bar(ul(color(white)(a/a)x=8/3color(white)(a/a)|)))
For example, when you substitute
color(red)(x=-3) back into the original equation:
log(3x+7)+log(x-2)=1
log(3color(red)((-3))+7)+log(color(red)((-3))-2)=1
log(-9+7)+log(-5)=1
color(teal)(log(-2))+color(teal)(log(-5))=1
For this reason,