How do you solve log_4 7 + 2 log_4 x = log_4 2log47+2log4x=log42?

1 Answer
Dec 14, 2015

x=sqrt(2/7)x=27

Explanation:

Given:
color(white)("XXX")log_4(7)+2log_4(x)=log_4(2)XXXlog4(7)+2log4(x)=log4(2)

Remember
color(white)("XXX")XXXlog multiplication rule: log_b(p*q) =log_b(p)+log_b(q)logb(pq)=logb(p)+logb(q)
color(white)("XXX")XXXlog power rule: log_b(s^t) = t*log_b(s)logb(st)=tlogb(s)

Therefore the given equation can be rewritten as
color(white)("XXX")log_4(7x^2)=log_4(2)XXXlog4(7x2)=log4(2)

from which it follows that
color(white)("XXX")7x^2=2XXX7x2=2

color(white)("XXX")x^2=2/7XXXx2=27

color(white)("XXX")x=sqrt(2/7)XXXx=27
color(white)("XXXXXX")XXXXXXwe can ignore the negative root as extraneous since sqrt(x)x requires x>=0x0 for Real solutions