Given:
color(white)("XXX")log_4(7)+2log_4(x)=log_4(2)XXXlog4(7)+2log4(x)=log4(2)
Remember
color(white)("XXX")XXXlog multiplication rule: log_b(p*q) =log_b(p)+log_b(q)logb(p⋅q)=logb(p)+logb(q)
color(white)("XXX")XXXlog power rule: log_b(s^t) = t*log_b(s)logb(st)=t⋅logb(s)
Therefore the given equation can be rewritten as
color(white)("XXX")log_4(7x^2)=log_4(2)XXXlog4(7x2)=log4(2)
from which it follows that
color(white)("XXX")7x^2=2XXX7x2=2
color(white)("XXX")x^2=2/7XXXx2=27
color(white)("XXX")x=sqrt(2/7)XXXx=√27
color(white)("XXXXXX")XXXXXXwe can ignore the negative root as extraneous since sqrt(x)√x requires x>=0x≥0 for Real solutions