How do you solve [log4(x+3)]+[log4(2x)]=1?

1 Answer
Nov 29, 2015

x=1,2

Explanation:

Now toy need to know some basic rules to attempt this;

No1.

logab=x

ax=b

No2.

logab+logac=logabc

Now we are good to go

[log4(x+3)]+[log4(2x)]=1

log4(x+3)+log4(2x)=1

Now lets Identify our common base4

Now

Using rule number 2 Lets combine

log4(x+3)(2x)=1

Now lets go back to our first result

Take a look

logab=x

Our base here is 4 and our b is (x+3)(2x)

So lets wrap it up;

41=(x+3)(2x)

4=(x+3)(2x)

Lets now distribute and multiply;

(x+3)(2x)=(2)(x)+(x)(x)+(3)(2)+(3)(x)

(x+3)(2x)=2xx2+63x

(x+3)(2x)=x2+6x

=> x2+6x=4

=>x2x+2=0

Now lets try factoring

So

ab=2, a+b=1

So the only possibility to factor is splitting the middle term in pars of
1 and -2

=>x22x+x+2=0

x(x+2)+1(x+2)=0

(1x)(x+2)=0

=> There are 2 roots;
x=1,2

=========================================================
Check
=

log4(x+3)(2x)=1
......................................................................................................................
x = 1

log4(1+3)(21)=1
log44=1

Which is right ; So it is a valid solution
.......................................................................................................................
x =- 2

log4(2+3)(2(2))=1
log4(1)(2+2)=1

log44=1

Which is right ; So it is a valid solution

===========================================================