How do you solve # log(4x)=log 5+log(x-1)#?

2 Answers
Apr 17, 2018

#color(blue)(x=5)#

Explanation:

By the laws of logarithms:

#log_a(b)+log_a(c)=log_a(bc)#

#log(4x)=log5+log(x-1)#

#log(4x)=log(5x-5)#

#:.#

#4x=5x-5#

#x=5#

Apr 17, 2018

#x=5#

Explanation:

#"using the "color(blue)"laws of logarithms"#

#•color(white)(x)logx+logy=log(xy)#

#•color(white)(x)logx=logyhArrx=y#

#rArrlog(4x)=log(5(x-1))#

#rArr5(x-1)=4x#

#rArr5x-5=4xrArrx=5#