How do you solve log5x+log3x=1?

1 Answer
Feb 23, 2016

x=eln5(ln3)ln3+ln51.9211

Explanation:

Use the change of base formula, which states that

logab=logcblogca

The common base I'll use here is e, since it is the base of the natural logarithm. It doesn't actually matter which base is chosen: any base will work.

The original expression can be rewritten as:

lnxln5+lnxln3=1

Find a common denominator of ln5(ln3):

lnx(ln3)ln5(ln3)+lnx(ln5)ln5(ln3)=1

lnx(ln3)+lnx(ln5)ln5(ln3)=1

Cross multiply.

lnx(ln3)+lnx(ln5)=ln5(ln3)

Factor a lnx from both terms on the left hand side.

lnx(ln3+ln5)=ln5(ln3)

Divide both sides by ln3+ln5.

lnx=ln5(ln3)ln3+ln5

To undo the natural logarithm, exponentiate both sides with base e.

x=eln5(ln3)ln3+ln51.9211