How do you solve log5x+log3x=1?
1 Answer
Feb 23, 2016
Explanation:
Use the change of base formula, which states that
logab=logcblogca
The common base I'll use here is
The original expression can be rewritten as:
lnxln5+lnxln3=1
Find a common denominator of
lnx(ln3)ln5(ln3)+lnx(ln5)ln5(ln3)=1
lnx(ln3)+lnx(ln5)ln5(ln3)=1
Cross multiply.
lnx(ln3)+lnx(ln5)=ln5(ln3)
Factor a
lnx(ln3+ln5)=ln5(ln3)
Divide both sides by
lnx=ln5(ln3)ln3+ln5
To undo the natural logarithm, exponentiate both sides with base
x=eln5(ln3)ln3+ln5≈1.9211