How do you solve Log(5x)+log(x-1)=2?

1 Answer
Apr 19, 2016

x={5}

Explanation:

log(5x)+log(x-1)=2

"so "log a +log b=log(a*b);

"equation can be evaluated as:"

log 5x*(x-1)=2

if log _a b=c" "then" " b=a^c

thus;

5x(x-1)=10^2

5x(x-1)=100

5x^2-5x=100
"if both side of equation being divided by 5"
x^2-x-20=0

(x-5)(x+4)=0

if (x-5)=0" ;" rArr x=5

if (x+4)=0" ;" rArr x=-4

x={5}