How do you solve log_6(b^2+2) + log_6 2=2log6(b2+2)+log62=2?

1 Answer
Jun 20, 2015

b=+-4b=±4

Explanation:

Start by usig the following property of logs:

log_ab+log_ac=log_a(b*c)logab+logac=loga(bc)
so you get:

log_6[2(b^2+2)]=2log6[2(b2+2)]=2

now use the definition of log:
log_ax=b ->x=a^blogax=bx=ab

in your case:
2(b^2+2)=6^22(b2+2)=62
b^2+2=18b2+2=18
b^2=16b2=16
b=+-sqrt(16)=+-4b=±16=±4