How do you solve log_6x+log_6(x-9)=2log6x+log6(x9)=2?

1 Answer
Jul 24, 2016

Use the log property log_a(n) + log_a(m) = log_a(n xx m)loga(n)+loga(m)=loga(n×m):

=>log_6(x(x - 9)) = 2log6(x(x9))=2

=>log_6(x^2 - 9x) = 2log6(x29x)=2

=>x^2 - 9x = 6^2x29x=62

=>x^2 - 9x = 36x29x=36

=>x^2 - 9x - 36 = 0x29x36=0

=>(x - 12)(x + 3) = 0(x12)(x+3)=0

=>x = 12 and -3x=12and3

Checking in the original equation, we find that only x = 12x=12 works. Hence, the solution set is {12}{12}.

Hopefully this helps!