How do you solve log_6 (x-4) ^2=2log6(x4)2=2?

1 Answer
May 9, 2018

x_"1"=4+6^sqrt2x1=4+62
x_"2"=4+1/(6^sqrt2)x2=4+162

Explanation:

log_"6"(x-4)²=2
(ln(x-4)/ln(6))²=2
ln(x-4)/ln(6)=±sqrt2
ln(x-4)=±ln(6)sqrt2
x-4=6^(±sqrt2)
x=4+6^(±sqrt2)
x_"1"=4+6^sqrt2
x_"2"=4+1/(6^sqrt2)
\0/ here's our answer!