How do you solve log_7x=log_2 9?

1 Answer
Mar 25, 2016

x=477.59

Explanation:

As log_b x=log_ax/log_ab, we have

log_7 x=log_2 9 is log_10x/log_10 7=log_10 9/log_10 2 i.e.

logx/log7=log9/log2

Hence logx=(log9*log7)/log2=(0.9542*0.8451)/0.3010 or

logx=2.679 or x=10^(2.679) or

x=477.59