First, use the property that log_{a}(C/D)=log_{a}(C)-log_{a}(D)loga(CD)=loga(C)−loga(D) to rewrite the equation as
log_{a}((X+4)/(X-7))=log_{a}((X-8)/(X-9))loga(X+4X−7)=loga(X−8X−9)
Next, use the fact that log_{a}(z)loga(z) is a one-to-one function (when a>0a>0 and a!=1a≠1) to say that the inputs are the same:
(X+4)/(X-7)=(X-8)/(X-9)X+4X−7=X−8X−9
Now cross-multiply to get:
(X+4)(X-9)=(X-8)(X-7)(X+4)(X−9)=(X−8)(X−7)
After using FOIL, this becomes
X^{2}-5X-36=X^2-15X+56X2−5X−36=X2−15X+56.
Rearranging and canceling appropriately gives
10X=9210X=92 so that X=92/10=46/5=9.2X=9210=465=9.2
You should always check your answer in the original equation. When X=9.2X=9.2, we have
X+4=13.2X+4=13.2, X-7=2.2X−7=2.2, X-8=1.2X−8=1.2, and X-9=0.2X−9=0.2
You can use any value for a>0a>0 except a=1a=1. For instance, if we use a=10a=10, then:
log_{10}(13.2)approx 1.120574log10(13.2)≈1.120574, log_{10}(2.2)approx 0.342423log10(2.2)≈0.342423, log_{10}(1.2)approx 0.079181log10(1.2)≈0.079181, and log_{10}(0.2)approx -0.698970log10(0.2)≈−0.698970
and log_{10}(13.2)-log_{10}(2.2)approx 1.120574-0.342423= 0.778151log10(13.2)−log10(2.2)≈1.120574−0.342423=0.778151 and log_{10}(1.2)-log_{10}(0.2)approx 0.079181-(-0.698970)=0.778151log10(1.2)−log10(0.2)≈0.079181−(−0.698970)=0.778151