How do you solve log_a (X+4) - log_a (X-7) = log_a (X-8) - log_a (X-9)loga(X+4)loga(X7)=loga(X8)loga(X9)?

2 Answers
Jul 24, 2015

X=46/5=9.2X=465=9.2

Explanation:

First, use the property that log_{a}(C/D)=log_{a}(C)-log_{a}(D)loga(CD)=loga(C)loga(D) to rewrite the equation as

log_{a}((X+4)/(X-7))=log_{a}((X-8)/(X-9))loga(X+4X7)=loga(X8X9)

Next, use the fact that log_{a}(z)loga(z) is a one-to-one function (when a>0a>0 and a!=1a1) to say that the inputs are the same:

(X+4)/(X-7)=(X-8)/(X-9)X+4X7=X8X9

Now cross-multiply to get:

(X+4)(X-9)=(X-8)(X-7)(X+4)(X9)=(X8)(X7)

After using FOIL, this becomes

X^{2}-5X-36=X^2-15X+56X25X36=X215X+56.

Rearranging and canceling appropriately gives

10X=9210X=92 so that X=92/10=46/5=9.2X=9210=465=9.2

You should always check your answer in the original equation. When X=9.2X=9.2, we have

X+4=13.2X+4=13.2, X-7=2.2X7=2.2, X-8=1.2X8=1.2, and X-9=0.2X9=0.2

You can use any value for a>0a>0 except a=1a=1. For instance, if we use a=10a=10, then:

log_{10}(13.2)approx 1.120574log10(13.2)1.120574, log_{10}(2.2)approx 0.342423log10(2.2)0.342423, log_{10}(1.2)approx 0.079181log10(1.2)0.079181, and log_{10}(0.2)approx -0.698970log10(0.2)0.698970

and log_{10}(13.2)-log_{10}(2.2)approx 1.120574-0.342423= 0.778151log10(13.2)log10(2.2)1.1205740.342423=0.778151 and log_{10}(1.2)-log_{10}(0.2)approx 0.079181-(-0.698970)=0.778151log10(1.2)log10(0.2)0.079181(0.698970)=0.778151

Jul 24, 2015

I found x=9.2x=9.2

Explanation:

You can use the fact that: log_ax-log_ay=log_a(x/y)logaxlogay=loga(xy) to get:
log_a((x+4)/(x-7))=log_a((x-8)/(x-9))loga(x+4x7)=loga(x8x9)
take the power of aa on bothe sides to get rid of the logs:
cancel(a)^(cancel(log_a)((x+4)/(x-7)))=cancel(a)^(cancel(log_a)((x-8)/(x-9)))
(x+4)/(x-7)=(x-8)/(x-9)
(x+4)(x-9)=(x-8)(x-7)
cancel(x^2)-9x+4x-36=cancel(x^2)-7x-8x+56
10x=92
x=9.2