How do you solve logb(x22)+2logb6=logb6x?

1 Answer
May 21, 2016

x={32,43}

Explanation:

logb(x22)+2logb6=logb6x

logb(x22)+logb62=logb6x

logb(x22)62=logb6x

logb(x22)62logb6x=0

logb((x22)626x)=0

logb(6x212x)=0

6x212x=b0

b0=1

6x212x=1

6x212=x 6x2x12=0

(2x3)(3x+4)=0

2x3=0 2x=3 x=32

3x+4=0 3x=4 x=43

x={32,43}