How do you solve logb(x2−2)+2logb6=logb6x?
logb(x2−2)+2logb6=logb6x
logb(x2−2)+logb62=logb6x
logb(x2−2)⋅62=logb6x
logb(x2−2)⋅62−logb6x=0
logb((x2−2)⋅626x)=0
logb(6x2−12x)=0
6x2−12x=b0
b0=1
6x2−12x=1
6x2−12=x 6x2−x−12=0
(2x−3)(3x+4)=0
2x−3=0 2x=3 x=32
3x+4=0 3x=4 x=43
x={32,43}