How do you solve log x - log(x-10)=1?

1 Answer
Aug 10, 2015

color(red)(x=100/9)

Explanation:

logx-log(x−10)=1

Recall that loga-logb=log(a/b), so

logx-log(x−10)=log(x/(x-10))

log(x/(x-10))=1

Convert the logarithmic equation to an exponential equation.

10^(log(x/(x-10))) = 10^1

Remember that 10^logx =x, so

x/(x-10)=10

x=10(x-10)

x=10x-100

9x=100

x=100/9

Check:

logx-log(x−10)=1

If x=100/9,

log(100/9)-log(100/9−10)=1

log(100/9)-log(100/9-90/9)=1

log(100/9)-log((100-90)/9)=1

log(100/9)-log(10/9)=1

log((100/color(red)(cancel(color(black)(9))))/(10/color(red)(cancel(color(black)(9)))))=1

log(100/10)=1

log10 = 1

1=1

x=100/9 is a solution.