How do you solve log x + log(x+21) =2logx+log(x+21)=2?

1 Answer
Jun 20, 2018

x=4x=4

Explanation:

Here,

logx+log(x+21)=2logx+log(x+21)=2

We assume that the common base of the log as 10.

log_10x+log_10(x+21)=2log10x+log10(x+21)=2

=>log_10(x*(x+21))=2to[becauselogM+logN=log(MN)

=>log_10(x^2+21x)=2

=>x^2+21x=10^2to[becauseX=log_aY<=>Y=a^X]

=>x^2+21x-100=0

=>x^2+25x-4x-100=0

=>x(x+25)-4(x+25)=0

=>(x-4)(x+25)=0

=>x=4 or x=-25

But for x=-25 log x is not defined.

Hence x=4

Check :

LHS=log_10 4+log_10 (4+21)=log_10 4+log_10 25

:.LHS=log_10(4xx25)=log_10 100=log_10 10^2=2=RHS