How do you solve log x- log(x-8)=1logxlog(x8)=1?

1 Answer

x=80/9=8 8/9x=809=889

Explanation:

The given: log x- log (x-8) = 1logxlog(x8)=1

This means the common logarithm of base 10:

log_10 x-log_10(x-8) = 1log10xlog10(x8)=1

Also log_10 10=1log1010=1

therefore

log_10 x-log_10(x-8) = log_10 10log10xlog10(x8)=log1010

log_10 (x/(x-8))=log_10 10log10(xx8)=log1010

Take Antilogarithm of both sides of the equation

Antilog(log_10 (x/(x-8)))=Antilog(log_10 10) Antilog(log10(xx8))=Antilog(log1010)

means

10^(log_10 (x/(x-8)))=10^(log_10 10)10log10(xx8)=10log1010

means

x/(x-8)=10xx8=10

solve for xx now

x=10(x-8)x=10(x8)

x=10x-80x=10x80

x-10x=-80x10x=80

-9x=-809x=80

(-9x)/-9=(-80)/-99x9=809

x=80/9=8 8/9x=809=889

Have a nice day !!! from the Philippines..