How do you solve logx+log(x9)=1?

1 Answer
Aug 10, 2015

x=10

Explanation:

logx+log(x9)=1

Recall that loga+logb=log(ab), so

logx+log(x9)=log(x(x9))=log(x29x)

log(x29x)=1

Convert the logarithmic equation to an exponential equation.

10log(x29x)=101

Remember that 10logx=x, so

x29x=10

x29x10=0

(x10)(x+1)=0

x10=0 and x+1=0

x=10 and x=1

Check:

logx+log(x9)=1

If x=10,

log10+log(109)=1

log10+log1=1

1+0=1

1=1

x=10 is a solution.

If x=1,

log(1)+log(19)=1

This is impossible, because the logarithm of a negative number is undefined.