How do you solve sqrt(a+21)-1=sqrt(a+12)a+211=a+12?

2 Answers

the answer is a=4a=4

Explanation:

the given equation is sqrt(a+21)-1=sqrt(a+12)a+211=a+12
squaring on both sides we get
a+21+1-2sqrt(a+21)=a+12a+21+12a+21=a+12
simplifying we get 2sqrt(a+21)=10rArrsqrt(a+21)=52a+21=10a+21=5
squaring on both sides we get
a+21=25rArra=4a+21=25a=4

Nov 8, 2017

a=4a=4

Explanation:

sqrt(a+21)-1=sqrt(a+12)a+211=a+12

sqrt(a+21)-sqrt(a+12)=1a+21a+12=1

After using difference of squares identity,

[(a+21)-(a+12)]/[sqrt(a+21)-sqrt(a+12)]=9/1(a+21)(a+12)a+21a+12=91

sqrt(a+21)+sqrt(a+12)=9a+21+a+12=9

Hence,

sqrt(a+21)+sqrt(a+12)+sqrt(a+21)-sqrt(a+12)=9+1a+21+a+12+a+21a+12=9+1

2sqrt(a+21)=102a+21=10

sqrt(a+21)=5a+21=5

a+21=25a+21=25

a=4a=4