How do you solve sqrt(x-7) = 7 - sqrt(x)x7=7x?

1 Answer
Apr 3, 2016

x=16x=16

Explanation:

color(blue)(sqrt(x-7)=7-sqrtxx7=7x

Take the square of both sides to remove the radical sign in the l.h.s

rarr(sqrt(x-7))^2=(7-sqrtx)^2(x7)2=(7x)2

rarrx-7=(7-sqrtx)^2x7=(7x)2

Use the formula color(brown)((a-b)^2=a^2-2ab+b^2(ab)2=a22ab+b2

rarrx-7=7^2-2(7)(sqrtx)+sqrtx^2x7=722(7)(x)+x2

rarrx-7=49-14sqrtx+xx7=4914x+x

Subtract xx both sides

rarrcancelx-7cancel(-x)=49-14sqrtx+cancel(x-x

rarr-7=49-14sqrtx

Subtract 49 both sides

rarr-7-49=cancel49-14sqrtxcancel(-49

rarr-56=-14sqrtx

Divide both sides by -14

rarr(-56)/-14=(cancel(-14)sqrtx)/cancel(-14

rarr4=sqrtx

Square both sides

rarr4^2=sqrtx^2

color(green)(rarr16=x