How do you solve the equation log564log5(83)+log52=log5(4p)?

1 Answer

p=12

Explanation:

We have:

log5(64)log5(83)+log5(2)=log5(4p)

Let's first combine the left side:

log5(64×283)=log5(4p)

log5(64×2×38)=log5(4p)

log5(8×2×3)=log5(4p)

log5(48)=log5(4p)

We can now take the inverse function (effectively getting rid of the logs):

48=4p

p=12