Perform the Gauss Jordan elimination on the augmented matrix
A=((3,2,-3,|,-2),(7,-2,5,|,-14),(2,4,1,|,6))
I have written the equations not in the sequence as in the question in order to get 1 as pivot.
Perform the folowing operations on the rows of the matrix
R1larrR1-R3; R2larrR2-3R3
A=((1,-2,-4,|,-8),(1,-14,2,|,-32),(2,4,1,|,6))
R2larrR2-R1; R3larrR3-2R1
A=((1,-2,-4,|,-8),(0,-12,6,|,-24),(0,8,9,|,22))
R3larrR3+2/3R2
A=((1,-2,-4,|,-8),(0,-12,6,|,-24),(0,0,13,|,6))
R3larr(R3)/13
A=((1,-2,-4,|,-8),(0,-12,6,|,-24),(0,0,1,|,6/13))
R1larrR1+4R3; R2larrR2-6R3
A=((1,-2,0,|,-80/13),(0,-12,0,|,-348/13),(0,0,1,|,6/13))
R2larr(R2)/(-12)
A=((1,-2,0,|,-80/13),(0,1,0,|,29/13),(0,0,1,|,6/13))
R1larrR1+2R2
A=((1,0,0,|,-22/13),(0,1,0,|,29/13),(0,0,1,|,6/13))
Thus x=-22/13, y=29/13 and z=6/13