How do you solve the system 3x+2y-3z=-23x+2y3z=2, 7x-2y+5z=-147x2y+5z=14, 2x+4y+z=62x+4y+z=6?

1 Answer
Mar 13, 2018

x=-22/13x=2213, y=29/13y=2913 and z=6/13z=613

Explanation:

Perform the Gauss Jordan elimination on the augmented matrix

A=((3,2,-3,|,-2),(7,-2,5,|,-14),(2,4,1,|,6))

I have written the equations not in the sequence as in the question in order to get 1 as pivot.

Perform the folowing operations on the rows of the matrix

R1larrR1-R3; R2larrR2-3R3

A=((1,-2,-4,|,-8),(1,-14,2,|,-32),(2,4,1,|,6))

R2larrR2-R1; R3larrR3-2R1

A=((1,-2,-4,|,-8),(0,-12,6,|,-24),(0,8,9,|,22))

R3larrR3+2/3R2

A=((1,-2,-4,|,-8),(0,-12,6,|,-24),(0,0,13,|,6))

R3larr(R3)/13

A=((1,-2,-4,|,-8),(0,-12,6,|,-24),(0,0,1,|,6/13))

R1larrR1+4R3; R2larrR2-6R3

A=((1,-2,0,|,-80/13),(0,-12,0,|,-348/13),(0,0,1,|,6/13))

R2larr(R2)/(-12)

A=((1,-2,0,|,-80/13),(0,1,0,|,29/13),(0,0,1,|,6/13))

R1larrR1+2R2

A=((1,0,0,|,-22/13),(0,1,0,|,29/13),(0,0,1,|,6/13))

Thus x=-22/13, y=29/13 and z=6/13