How do you solve the system #5x-y=4# and #-2x+6y=4# by graphing?
1 Answer
See a solution process below:
Explanation:
First, solve for two points on the first line, plot the points and draw a line through the points:
For
For
graph{(5x - y - 4)(x^2 + (y + 4)^2 - 0.125)((x-2)^2 + (y - 6)^2 - 0.125) = 0 [-20, 20, -10, 10]]}
Do the same for the second equation:
For
For
graph{(-2x + 6y - 4)(x^2+(y - (2/3))^2-0.125)((x-2)^2+(y - (4/3))^2-0.125) (5x - y - 4)(x^2 + (y + 4)^2 - 0.125)((x-2)^2 + (y - 6)^2 - 0.125) = 0 [-20, 20, -10, 10]]}
Zooming in, we can see the lines intersect at:
graph{(-2x + 6y - 4)(5x - y - 4)((x -1)^2+(y-1)^2-0.0125) = 0 [-6, 6, -3, 3]}