Perform the Gauss Jordan elimination on the augmented matrix
#A=((9,9,1,|,-112),(8,5,-9,|,-137),(7,4,3,|,-64))#
I have written the equations not in the sequence as in the question in order to get #1# as pivot.
Perform the folowing operations on the rows of the matrix
#R2larrR1-R2#; #R3larrR3-R2#
#A=((1,4,10,|,25),(8,5,-9,|,-137),(-1,-1,12,|,73))#
#R2larrR2-8R1#; #R3larrR3+R1#
#A=((1,4,10,|,25),(0,-27,-89,|,-337),(0,3,22,|,98))#
#R2larrR2+9R3#
#A=((1,4,10,|,25),(0,0,109,|,545),(0,3,22,|,98))#
#R2larr(R2)/109#
#A=((1,4,10,|,25),(0,0,1,|,5),(0,3,22,|,98))#
#R1larrR1-10R2#; #R3larrR3-22R2#
#A=((1,4,0,|,-25),(0,0,1,|,5),(0,3,0,|,-12))#
#R3larr(R3)/3#
#A=((1,4,0,|,-25),(0,0,1,|,5),(0,1,0,|,-4))#
#R1larrR1-4R3#
#A=((1,0,0,|,-9),(0,0,1,|,5),(0,1,0,|,-4))#
Thus #x=-9#, #y=-4# and #z=5#