How do you solve the system a+2b=2, a+b+4c=7, 2a+3bc=5?

1 Answer

(a,b,c)=(52,27,18)

Explanation:

a+2b=2
a+b+4c=7
2a+3bc=5

I'm going to use the first equation to substitute for a in the other two equations:

a=2b2

~~~~~

(2b2)+b+4c=7

2b+2+b+4c=7

3b+4c=9

~~~~~

2(2b2)+3bc=5

4b4+3bc=5

bc=9

And we can now use this last equation to substitute into the one prior:

b=c9

~~~~~

3(c9)+4c=9

3c27+4c=9

c=18

And now let's find b:

bc=9

b18=9

b=27

And check it:

3b+4c=9

3b+4(18)=9

3b+72=9

3b=81

b=27

And now let's find the last variable:

a+2b=2

a+2(27)=2

a54=2

a=52

and check it:

a+b+4c=7

5227+4(18)=7

79+72=7

7=7

To summarize,

(a,b,c)=(52,27,18)