How do you solve the triangle ABC, given b=40, B=45, c=15?

1 Answer
Nov 3, 2016

#angleA=120^circ#
#angleC~~15^circ#
#a~~49#

Explanation:

This is an SSA triangle so you can use the Law of Sine to solve this
Law of Sine = #sinA/a=sinB/b=sinC/c#
in this case we use #sinB/c=sinC/c#
Given: #b=40, B=45^circ, c=15#

first let's find #angleC#
#sin45^circ/40=sinC/15#

#15sin45^circ=40sinC#

#angleC=sin^-1((15sin45^circ)/40)~~ 15^circ#
#angleC~~15^circ#

now we have #angleB# and #angleC# so we can subtract both from
#180^circ# to find the third angle
#angleA=180^circ-(15^circ+45^circ)=120^circ#
#angleA=120^circ#

to find #a# we use Law of Sine again
#sin45^circ/40=sin120^circ/a#
#asin45^circ=40sin120^circ#
#a=(40sin120^circ)/(sin45^circ)~~49#
#a~~49#