How do you solve the triangle given A=47, a=67, b=83?

1 Answer
May 24, 2018

color(purple)(hat A = 34.42^@, hat B = 53.84^@, hat C = 91.74^@ˆA=34.42,ˆB=53.84,ˆC=91.74

Explanation:

a = 47, b = 67, c = 83a=47,b=67,c=83

As per Law of Cosines,

a^2 = b^2 + c^2 - 2 b c cos Aa2=b2+c22bccosA

cos A = (b^2 + c^2- a^2) / (2bc)cosA=b2+c2a22bc

cos A = (67^2 + 83^2 - 47^2) / (2 * 67 * 83)cosA=672+83247226783

cos A = 0.8244cosA=0.8244

hat A = cos ^-1 0.8244 = 34.42^@ˆA=cos10.8244=34.42

Similarly, cos C = (b^2 + a^2- c^2) / (2ab)cosC=b2+a2c22ab

cos C = (47^2 + 67^2 - 83^2) / (2 * 47 * 67)cosC=472+67283224767

cos C = -0.0303cosC=0.0303

hat C = 91.74^@ˆC=91.74

hat B = 180 - hat A - hat CˆB=180ˆAˆC

hat B = 180 - 34.42 - 91.74 = 53.84^@ˆB=18034.4291.74=53.84