a = 47, b = 67, c = 83a=47,b=67,c=83
As per Law of Cosines,
a^2 = b^2 + c^2 - 2 b c cos Aa2=b2+c2−2bccosA
cos A = (b^2 + c^2- a^2) / (2bc)cosA=b2+c2−a22bc
cos A = (67^2 + 83^2 - 47^2) / (2 * 67 * 83)cosA=672+832−4722⋅67⋅83
cos A = 0.8244cosA=0.8244
hat A = cos ^-1 0.8244 = 34.42^@ˆA=cos−10.8244=34.42∘
Similarly, cos C = (b^2 + a^2- c^2) / (2ab)cosC=b2+a2−c22ab
cos C = (47^2 + 67^2 - 83^2) / (2 * 47 * 67)cosC=472+672−8322⋅47⋅67
cos C = -0.0303cosC=−0.0303
hat C = 91.74^@ˆC=91.74∘
hat B = 180 - hat A - hat CˆB=180−ˆA−ˆC
hat B = 180 - 34.42 - 91.74 = 53.84^@ˆB=180−34.42−91.74=53.84∘