How do you solve using gaussian elimination or gauss-jordan elimination, 2x-3y-2z=102x3y2z=10, 3x-2y+2z=03x2y+2z=0, 4z-y+3z=-14zy+3z=1?

1 Answer
Jan 9, 2018

x=2x=2, y=0y=0 and z=-3z=3

Explanation:

Perform the Gauss Jordan elimination on the augmented matrix

A=((2,-3,-2,|,10),(3,-2,2,|,0),(4,-1,3,|,-1))

I have written the equations not in the sequence as in the question in order to get 1 as pivot.

Perform the folowing operations on the rows of the matrix

R1larrR1+R2

A=((5,-5,0,|,10),(3,-2,2,|,0),(4,-1,3,|,-1))

R1larr(R1)/5

A=((1,-1,0,|,2),(3,-2,2,|,0),(4,-1,3,|,-1))

R2larrR2-3R1; R3larrR3-4R1

A=((1,-1,0,|,2),(0,1,2,|,-6),(0,3,3,|,-9))

R3larrR3-3R2

A=((1,-1,0,|,2),(0,1,2,|,-6),(0,0,-3,|,9))

R3larrR3/(-3)

A=((1,-1,0,|,2),(0,1,2,|,-6),(0,0,1,|,-3))

R2larrR2-2R3

A=((1,-1,0,|,2),(0,1,0,|,0),(0,0,1,|,-3))

R1larrR1+R2

A=((1,0,0,|,2),(0,1,0,|,0),(0,0,1,|,-3))

Thus x=2, y=0 and z=-3