How do you solve using gaussian elimination or gauss-jordan elimination, 2x–3y+2z=2, x+4y-z=9, -3x+y–5z=5?

1 Answer
Feb 14, 2018

x=115/31, y=32/31 and z=-36/31

Explanation:

Perform the Gauss Jordan elimination on the augmented matrix

A=((2,-3,2,|,2),(1,4,-1,|,9),(-3,1,-5,|,5))

I have written the equations not in the sequence as in the question in order to get 1 as pivot.

Perform the folowing operations on the rows of the matrix

R1larrR1-2R2; R3larrR3+3R2

A=((0,-11,4,|,-16),(1,4,-1,|,9),(0,13,-16,|,32))

R3larr(R3+R1)

A=((0,-11,4,|,-16),(1,4,-1,|,9),(0,2,-12,|,16))

R3larr(R3)/2

A=((0,-11,4,|,-16),(1,4,-1,|,9),(0,1,-6,|,8))

R1larrR1+11R3; R2larrR2-4R3

A=((0,0,-62,|,72),(1,0,23,|,-23),(0,1,-6,|,8))

R1larr(R1)/(-62)

A=((0,0,1,|,-36/31),(1,0,23,|,-23),(0,1,-6,|,8))

R2larrR2-23R1; R3larrR3+6R1

A=((0,0,1,|,-36/31),(1,0,0,|,115/31),(0,1,0,|,32/31))

Thus, x=115/31, y=32/31 and z=-36/31