How do you solve using gaussian elimination or gauss-jordan elimination, -2x -5y +5z =4, -3x -y -z =10, 5x +3y -z =10?

1 Answer
Jan 6, 2018

P="[(43,-46,-28)]"

Explanation:

([-2,-5,5,|,4],[-3,-1,-1,|,10],[5,3,-1,|,10])
R_1=R_1xx5
R_2=R_2xx5
R_3=R_3xx3

([-10,-25,25,|,20],[-15,-5,-5,|,50],[15,9,-3,|,30])
R_2=R_2+R_3
R_3=R_3xx2/3

([-10,-25,25,|,20],[0,4,-8,|,80],[10,6,-2,|,20])
R_3=R_3+R_1
R_1=R_1xx1/5
R_2=R_2xx1/4

([-2,-5,5,|,4],[0,1,-2,|,20],[0,-19,23,|,40])
R_3=R_3+19xxR_2

([-2,-5,5,|,4],[0,1,-2,|,20],[0,0,-15,|,40+20xx19])
R_3=R_3xx-1/15

([-2,-5,5,|,4],[0,1,-2,|,20],[0,0,1,|,-(cancel5xx8+cancel5xx4xx19)/(cancel5xx3)])
R_2=R_2+2xxR_3

([-2,-5,5,|,4],[0,1,0,|,20-2xx(4xx(2+19))/(3)],[0,0,1,|,-(4xx(2+19))/(3)])
Simplifing right side

([-2,-5,5,|,4],[0,1,0,|,(60-2xx84)/3],[0,0,1,|,-84/3])
R_1=R_1+5xxR_2
R_1=R_1-5xxR_3
R_1=R_1xx-1/2

([1,0,0,|,-2+5xx(60-198)/-6-5xx(-84/-6)],[0,1,0,|,(60-198)/3],[0,0,1,|,-28])
Simplifing right side

([1,0,0,|,-2+5xx6xx(10-33)/-6-5xx6xx(14/6)],[0,1,0,|,(60-198)/3],[0,0,1,|,-28])

color(red)x=-2-5xx(10-33)-5xx14=-2+115-70color(red)(=43)

color(red)y=(60-198)/3=20-66color(red)(=-46)

color(red)(z=-28)

P="[(43,-46,-28)]"