How do you solve using gaussian elimination or gauss-jordan elimination, 2x + y - 3z = - 32x+y3z=3, 3x + 2y + 4z = 53x+2y+4z=5, -4x - y + 2z = 44xy+2z=4?

1 Answer
Jul 3, 2018

The solution is ((x),(y),(z))=((-1),(2),(1))

Explanation:

Perform the Gauss-Jordan Elimination on the augmented matrix

A=((2,1,-3,|,-3),(3,2,4,|,5),(-4,-1,2,|,4))

Make the pivot in the first column R1larr(R1)/2

((1,1/2,-3/2,|,-3/2),(3,2,4,|,5),(-4,-1,2,|,4))

Eliminate the first column R2larr(R2-3R1) and R3larr(R3+4R1)

((1,1/2,-3/2,|,-3/2),(0,1/2,17/2,|,19/2),(0,1,-4,|,-2))

Make the pivot in the 2nd column swap R2harrR3

((1,1/2,-3/2,|,-3/2),(0,1,-4,|,-2),(0,1/2,17/2,|,19/2))

Eliminate the second column R3larr(R3-1/2(R2)), R1larr(R1-(R2)/2)

((1,0,1/2,|,-1/2),(0,1,-4,|,-2),(0,0,21/2,|,21/2))

Make the pivot in the 3rd column R3larr(R3*2/21)

((1,0,1/2,|,-1/2),(0,1,-4,|,-2),(0,0,1,|,1))

Eliminate the 3rd column R1larr(R1-(R3)/2) and R2larr(R2+4R3)

((1,0,0,|,-1),(0,1,0,|,2),(0,0,1,|,1))

The solution is

((x),(y),(z))=((-1),(2),(1))