We perform the Gauss Jordan elimination with the augmented matrix
((1,2,-1,3,:,2),(2,1,1,3,:,1),(3,5,-2,7,:,3),(2,6,-4,9,:,8))
R4larrR4-2R1, => , ((1,2,-1,3,:,2),(2,1,1,3,:,1),(3,5,-2,7,:,3),(0,2,-2,3,:,4))
R3larrR3-3R1, => , ((1,2,-1,3,:,2),(2,1,1,3,:,1),(0,-1,1,-2,:,-3),(0,2,-2,3,:,4))
R2larrR2-2R1, => , ((1,2,-1,3,:,2),(0,-3,3,-3,:,-3),(0,-1,1,-2,:,-3),(0,2,-2,3,:,4))
R2larrR1-R4, => , ((1,0,1,0,:,-2),(0,-3,3,-3,:,-3),(0,-1,1,-2,:,-3),(0,2,-2,3,:,4))
R4larrR4+2R3, => , ((1,0,1,0,:,-2),(0,-3,3,-3,:,-3),(0,-1,1,-2,:,-3),(0,0,0,-1,:,-2))
R4larr(R4)/(-1), => , ((1,0,1,0,:,-2),(0,-3,3,-3,:,-3),(0,-1,1,-2,:,-3),(0,0,0,1,:,2))
R2larr(R2)/(-3), => , ((1,0,1,0,:,-2),(0,1,-1,1,:,1),(0,-1,1,-2,:,-3),(0,0,0,1,:,2))
R3larrR3+R2, => , ((1,0,1,0,:,-2),(0,1,-1,1,:,1),(0,0,0,-1,:,-2),(0,0,0,1,:,2))
R3larr(R3)/(-1), => , ((1,0,1,0,:,-2),(0,1,-1,1,:,1),(0,0,0,1,:,2),(0,0,0,1,:,2))
R4larrR4-R3, => , ((1,0,1,0,:,-2),(0,1,-1,1,:,1),(0,0,0,1,:,2),(0,0,0,0,:,0))
R2larrR2-R3, => , ((1,0,1,0,:,-2),(0,1,-1,0,:,-1),(0,0,0,1,:,2),(0,0,0,0,:,0))
The solutions are x_4=2 , x_3 free, x_1=-2-x_3, x_2=-1+x_3