Let k be the constant of correction
Write as y=x^2+10x+5+k At this stage k=0
y=(x^(color(red)(2))+10x)+5+k
Take the square from x^(color(red)(2) and move it outside the bracket
y=(x+10x)^(color(red)(2))+5+k
remove the x from 10x
y=(x+10)^2+5+k
halve the 10
y=(x+ color(magenta)(5))^2+5+k
;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider y=ax^2+bx+c written in the form y=a(x+color(magenta)(b/(2a)))^2+c+k
From within the bracket we have k= (-1)xx a xx(color(magenta)(b/(2a)))^2
The axx is from the a outside the bracket but in your case a=1
so k=(-1)xx(color(magenta)(+5))^2 = -25
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(brown)(y=(x+5)^2+5+k)" "color(green)(->" "y=(x+5)^2+5-25
y=(x+5)^2-20
'~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("solving for "x" when "y=0)
=>0=(x+5)^2-20
sqrt(20)=sqrt((x+5)^2)
=>x+5=+-2sqrt(5)
=>x=-5+-2sqrt(5)
color(blue)(x~~ -9.472" and "-0.528" to 3 decimal places")