How do you solve using the completing the square method 0= x^2 + 10x + 5?

1 Answer
May 4, 2016

color(blue)(x~~ -9.472" and "-0.528" to 3 decimal places")

Explanation:

Let k be the constant of correction

Write as y=x^2+10x+5+k At this stage k=0

y=(x^(color(red)(2))+10x)+5+k

Take the square from x^(color(red)(2) and move it outside the bracket

y=(x+10x)^(color(red)(2))+5+k

remove the x from 10x

y=(x+10)^2+5+k

halve the 10

y=(x+ color(magenta)(5))^2+5+k
;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider y=ax^2+bx+c written in the form y=a(x+color(magenta)(b/(2a)))^2+c+k

From within the bracket we have k= (-1)xx a xx(color(magenta)(b/(2a)))^2

The axx is from the a outside the bracket but in your case a=1

so k=(-1)xx(color(magenta)(+5))^2 = -25
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(brown)(y=(x+5)^2+5+k)" "color(green)(->" "y=(x+5)^2+5-25

y=(x+5)^2-20
'~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("solving for "x" when "y=0)

=>0=(x+5)^2-20

sqrt(20)=sqrt((x+5)^2)

=>x+5=+-2sqrt(5)

=>x=-5+-2sqrt(5)

color(blue)(x~~ -9.472" and "-0.528" to 3 decimal places")